3.198 \(\int \frac {x (a+b \cosh ^{-1}(c x))^2}{\sqrt {d-c^2 d x^2}} \, dx\)

Optimal. Leaf size=155 \[ -\frac {2 a b x \sqrt {c x-1} \sqrt {c x+1}}{c \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^2}{c^2 d}-\frac {2 b^2 (1-c x) (c x+1)}{c^2 \sqrt {d-c^2 d x^2}}-\frac {2 b^2 x \sqrt {c x-1} \sqrt {c x+1} \cosh ^{-1}(c x)}{c \sqrt {d-c^2 d x^2}} \]

[Out]

-2*b^2*(-c*x+1)*(c*x+1)/c^2/(-c^2*d*x^2+d)^(1/2)-2*a*b*x*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c/(-c^2*d*x^2+d)^(1/2)-2*
b^2*x*arccosh(c*x)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c/(-c^2*d*x^2+d)^(1/2)-(a+b*arccosh(c*x))^2*(-c^2*d*x^2+d)^(1/2
)/c^2/d

________________________________________________________________________________________

Rubi [A]  time = 0.34, antiderivative size = 163, normalized size of antiderivative = 1.05, number of steps used = 5, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {5798, 5718, 5654, 74} \[ -\frac {2 a b x \sqrt {c x-1} \sqrt {c x+1}}{c \sqrt {d-c^2 d x^2}}-\frac {(1-c x) (c x+1) \left (a+b \cosh ^{-1}(c x)\right )^2}{c^2 \sqrt {d-c^2 d x^2}}-\frac {2 b^2 (1-c x) (c x+1)}{c^2 \sqrt {d-c^2 d x^2}}-\frac {2 b^2 x \sqrt {c x-1} \sqrt {c x+1} \cosh ^{-1}(c x)}{c \sqrt {d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*ArcCosh[c*x])^2)/Sqrt[d - c^2*d*x^2],x]

[Out]

(-2*a*b*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(c*Sqrt[d - c^2*d*x^2]) - (2*b^2*(1 - c*x)*(1 + c*x))/(c^2*Sqrt[d - c^
2*d*x^2]) - (2*b^2*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*ArcCosh[c*x])/(c*Sqrt[d - c^2*d*x^2]) - ((1 - c*x)*(1 + c*x)
*(a + b*ArcCosh[c*x])^2)/(c^2*Sqrt[d - c^2*d*x^2])

Rule 74

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2, 0] &
& EqQ[a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)), 0]

Rule 5654

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcCosh[c*x])^n, x] - Dist[b*c*n, In
t[(x*(a + b*ArcCosh[c*x])^(n - 1))/(Sqrt[-1 + c*x]*Sqrt[1 + c*x]), x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 5718

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_.), x_
Symbol] :> Simp[((d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n)/(2*e1*e2*(p + 1)), x] - Dist[
(b*n*(-(d1*d2))^IntPart[p]*(d1 + e1*x)^FracPart[p]*(d2 + e2*x)^FracPart[p])/(2*c*(p + 1)*(1 + c*x)^FracPart[p]
*(-1 + c*x)^FracPart[p]), Int[(-1 + c^2*x^2)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c,
 d1, e1, d2, e2, p}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[n, 0] && NeQ[p, -1] && IntegerQ[p + 1
/2]

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {x \left (a+b \cosh ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}} \, dx &=\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {x \left (a+b \cosh ^{-1}(c x)\right )^2}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{\sqrt {d-c^2 d x^2}}\\ &=-\frac {(1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )^2}{c^2 \sqrt {d-c^2 d x^2}}-\frac {\left (2 b \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \left (a+b \cosh ^{-1}(c x)\right ) \, dx}{c \sqrt {d-c^2 d x^2}}\\ &=-\frac {2 a b x \sqrt {-1+c x} \sqrt {1+c x}}{c \sqrt {d-c^2 d x^2}}-\frac {(1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )^2}{c^2 \sqrt {d-c^2 d x^2}}-\frac {\left (2 b^2 \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \cosh ^{-1}(c x) \, dx}{c \sqrt {d-c^2 d x^2}}\\ &=-\frac {2 a b x \sqrt {-1+c x} \sqrt {1+c x}}{c \sqrt {d-c^2 d x^2}}-\frac {2 b^2 x \sqrt {-1+c x} \sqrt {1+c x} \cosh ^{-1}(c x)}{c \sqrt {d-c^2 d x^2}}-\frac {(1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )^2}{c^2 \sqrt {d-c^2 d x^2}}+\frac {\left (2 b^2 \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {x}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{\sqrt {d-c^2 d x^2}}\\ &=-\frac {2 a b x \sqrt {-1+c x} \sqrt {1+c x}}{c \sqrt {d-c^2 d x^2}}-\frac {2 b^2 (1-c x) (1+c x)}{c^2 \sqrt {d-c^2 d x^2}}-\frac {2 b^2 x \sqrt {-1+c x} \sqrt {1+c x} \cosh ^{-1}(c x)}{c \sqrt {d-c^2 d x^2}}-\frac {(1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )^2}{c^2 \sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.39, size = 149, normalized size = 0.96 \[ \frac {\sqrt {d-c^2 d x^2} \left (a^2 \left (1-c^2 x^2\right )+2 b \cosh ^{-1}(c x) \left (-a c^2 x^2+a+b c x \sqrt {c x-1} \sqrt {c x+1}\right )+2 a b c x \sqrt {c x-1} \sqrt {c x+1}-2 b^2 \left (c^2 x^2-1\right )+b^2 \left (1-c^2 x^2\right ) \cosh ^{-1}(c x)^2\right )}{c^2 d (c x-1) (c x+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(a + b*ArcCosh[c*x])^2)/Sqrt[d - c^2*d*x^2],x]

[Out]

(Sqrt[d - c^2*d*x^2]*(2*a*b*c*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x] + a^2*(1 - c^2*x^2) - 2*b^2*(-1 + c^2*x^2) + 2*b*
(a - a*c^2*x^2 + b*c*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x])*ArcCosh[c*x] + b^2*(1 - c^2*x^2)*ArcCosh[c*x]^2))/(c^2*d*
(-1 + c*x)*(1 + c*x))

________________________________________________________________________________________

fricas [A]  time = 1.11, size = 218, normalized size = 1.41 \[ \frac {2 \, \sqrt {-c^{2} d x^{2} + d} \sqrt {c^{2} x^{2} - 1} a b c x - {\left (b^{2} c^{2} x^{2} - b^{2}\right )} \sqrt {-c^{2} d x^{2} + d} \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right )^{2} + 2 \, {\left (\sqrt {-c^{2} d x^{2} + d} \sqrt {c^{2} x^{2} - 1} b^{2} c x - {\left (a b c^{2} x^{2} - a b\right )} \sqrt {-c^{2} d x^{2} + d}\right )} \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right ) - {\left ({\left (a^{2} + 2 \, b^{2}\right )} c^{2} x^{2} - a^{2} - 2 \, b^{2}\right )} \sqrt {-c^{2} d x^{2} + d}}{c^{4} d x^{2} - c^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccosh(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

(2*sqrt(-c^2*d*x^2 + d)*sqrt(c^2*x^2 - 1)*a*b*c*x - (b^2*c^2*x^2 - b^2)*sqrt(-c^2*d*x^2 + d)*log(c*x + sqrt(c^
2*x^2 - 1))^2 + 2*(sqrt(-c^2*d*x^2 + d)*sqrt(c^2*x^2 - 1)*b^2*c*x - (a*b*c^2*x^2 - a*b)*sqrt(-c^2*d*x^2 + d))*
log(c*x + sqrt(c^2*x^2 - 1)) - ((a^2 + 2*b^2)*c^2*x^2 - a^2 - 2*b^2)*sqrt(-c^2*d*x^2 + d))/(c^4*d*x^2 - c^2*d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{2} x}{\sqrt {-c^{2} d x^{2} + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccosh(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)^2*x/sqrt(-c^2*d*x^2 + d), x)

________________________________________________________________________________________

maple [B]  time = 0.31, size = 314, normalized size = 2.03 \[ -\frac {a^{2} \sqrt {-c^{2} d \,x^{2}+d}}{c^{2} d}+b^{2} \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (\sqrt {c x +1}\, \sqrt {c x -1}\, x c +c^{2} x^{2}-1\right ) \left (\mathrm {arccosh}\left (c x \right )^{2}-2 \,\mathrm {arccosh}\left (c x \right )+2\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-\sqrt {c x +1}\, \sqrt {c x -1}\, x c +c^{2} x^{2}-1\right ) \left (\mathrm {arccosh}\left (c x \right )^{2}+2 \,\mathrm {arccosh}\left (c x \right )+2\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}\right )+2 a b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (\sqrt {c x +1}\, \sqrt {c x -1}\, x c +c^{2} x^{2}-1\right ) \left (-1+\mathrm {arccosh}\left (c x \right )\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-\sqrt {c x +1}\, \sqrt {c x -1}\, x c +c^{2} x^{2}-1\right ) \left (1+\mathrm {arccosh}\left (c x \right )\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arccosh(c*x))^2/(-c^2*d*x^2+d)^(1/2),x)

[Out]

-a^2/c^2/d*(-c^2*d*x^2+d)^(1/2)+b^2*(-1/2*(-d*(c^2*x^2-1))^(1/2)*((c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c+c^2*x^2-1)*(
arccosh(c*x)^2-2*arccosh(c*x)+2)/c^2/d/(c^2*x^2-1)-1/2*(-d*(c^2*x^2-1))^(1/2)*(-(c*x+1)^(1/2)*(c*x-1)^(1/2)*x*
c+c^2*x^2-1)*(arccosh(c*x)^2+2*arccosh(c*x)+2)/c^2/d/(c^2*x^2-1))+2*a*b*(-1/2*(-d*(c^2*x^2-1))^(1/2)*((c*x+1)^
(1/2)*(c*x-1)^(1/2)*x*c+c^2*x^2-1)*(-1+arccosh(c*x))/c^2/d/(c^2*x^2-1)-1/2*(-d*(c^2*x^2-1))^(1/2)*(-(c*x+1)^(1
/2)*(c*x-1)^(1/2)*x*c+c^2*x^2-1)*(1+arccosh(c*x))/c^2/d/(c^2*x^2-1))

________________________________________________________________________________________

maxima [A]  time = 0.39, size = 145, normalized size = 0.94 \[ 2 \, b^{2} {\left (\frac {\sqrt {-d} x \operatorname {arcosh}\left (c x\right )}{c d} - \frac {\sqrt {c^{2} x^{2} - 1} \sqrt {-d}}{c^{2} d}\right )} + \frac {2 \, a b \sqrt {-d} x}{c d} - \frac {\sqrt {-c^{2} d x^{2} + d} b^{2} \operatorname {arcosh}\left (c x\right )^{2}}{c^{2} d} - \frac {2 \, \sqrt {-c^{2} d x^{2} + d} a b \operatorname {arcosh}\left (c x\right )}{c^{2} d} - \frac {\sqrt {-c^{2} d x^{2} + d} a^{2}}{c^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccosh(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

2*b^2*(sqrt(-d)*x*arccosh(c*x)/(c*d) - sqrt(c^2*x^2 - 1)*sqrt(-d)/(c^2*d)) + 2*a*b*sqrt(-d)*x/(c*d) - sqrt(-c^
2*d*x^2 + d)*b^2*arccosh(c*x)^2/(c^2*d) - 2*sqrt(-c^2*d*x^2 + d)*a*b*arccosh(c*x)/(c^2*d) - sqrt(-c^2*d*x^2 +
d)*a^2/(c^2*d)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x\,{\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^2}{\sqrt {d-c^2\,d\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a + b*acosh(c*x))^2)/(d - c^2*d*x^2)^(1/2),x)

[Out]

int((x*(a + b*acosh(c*x))^2)/(d - c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x \left (a + b \operatorname {acosh}{\left (c x \right )}\right )^{2}}{\sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*acosh(c*x))**2/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(x*(a + b*acosh(c*x))**2/sqrt(-d*(c*x - 1)*(c*x + 1)), x)

________________________________________________________________________________________